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In this paper we consider the probable stabllity of random processes described
by partial differential equations. Theorems are proved on probable stability
which are analogous to the theorems of Liapunov's second method,

The stabllity of the solution of a system of ordinary equations with ran~
dom parameters was consldered by Kats ard Krasovskii [1].

1, Let us consider perturbed random processes described by the system of
partial dilfferential equations
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(i,s=1,..., 1) (1.1)
Here ,= ¢, (¢£,x,y,2) are functions characterizing the state of the pro-

cess, x, y, & are the coordinatesof a region ¢ 4in which the process runs,
t is the time, wu = u (¢} {¢ = 1,...,a) are random parameters and

{uy, . . Uy =U.

For example, when studying the flow of a liquid or of a gas such parameters
may be the coefficient of viscoslty, the density of the free stream, and
other such quantities.

It 1= assumed that
fi(tsxsyvzaoa---,O*ux»---»ua):o

when t 2> to, (z,y, z2)=T, {w, us..., ua} eU
and the system {1.1) has & sclution for the prescribed initial and boundary
conditions and for realizations wu.» =y,»(z) {g = 1,...5a). The solution

Q= 0, t>¢t (i=1,.,n) corresponds to the unperturbed motion. The
perturbed motion differs from the unperturbed in that it has different
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initial conditions. Let us denote o = (g ,®z,...9,) and w=(u; uzs...suy).

The realizatlons of the random parameter y» (¢) may have discontinuitiles.
For example, v?= U, may hold for ¢, t< t, and uP=VU, for ¢, t g t, ,
etc.,, where the quantitles yU,, U;,... are such that when they are substitu-
ted into system (1.1) that latter has a solution with respect to ¢, (1 =1,..
ve+s n). At the instant of discontinuity of the parameter ®(t) the func-
tions y, and, co.3equently, the derivatives aw‘/%t (¢ =1,...,n) also have
discontinuities, while the solutions ¢, (¢ = 1,...,n) remain continuous
vector-functions., For example, let the coefficient of viscosity  of a
certain liquid take the two values v, and vy, with specified probabillties.
At the instant ¢ = ¢, when passing.from the state v, to v; the velocity
and pressure distrlbution of the liquid remaln continuous functions. The
distributlons obtalned for v = v, at the instant ¢ = ¢, are the 1lnitial
conditions for the liqulid flow when the coefficlent of viscosity 1s v = v,.

The random vector-functlon
{(P ((POv um to; t1 Z, y’ Z), u (an to; t)} = {q)’ u}
whose realization satisfies the system of equations (1.1) will be called the
solution of system (1.1).
At each instant ¢ let us define the metrics (distances) Po= Polep,u,t]
and p = p[g,u,t] which are real nonnegative numbers for any solution of
system (1.1) in region r &nd are such that p,[0,u,t]=0 and o{O,u,t] =0,

The initial state when ¢ = ¢, will be characterlzed by the metric o,
and the state at an arbitrary instant ¢ 2> t,, by the metric o .

We shall consider solutlions of system (1.1) which satisfy the condition
po< H, when t =rt,, where 4, 1is a positive constant.

The metric p = pleg,u,t] is said to be contlnuous in the metric polpsrust]
if for any number ¢ > O at ¢ = t, we can find a number & = 8(¢) > O such
that the inequality p < ¢ will be satisfled when p, < 8(e) and ¢ = to o

In what follows we shall take 1t that the metric p = p[e,u,t] is contl-
nuous in the metric p,= polep,u,t] at ¢ = ¢, .

But we shall not assume the converse, 1.e. the metrlc o, may not be con-
tinuous in the metric p . For example,

n n
¢ 2 0p; \2 0p;\2 dp; \2 s
o={{Derad”  p= {13 [or+ () + (52) + () | ar
bE o 4 oz dy dz
T i=]1 T 1=1

In this case, for a given ¢ > O there efist a &8(e) > O such that
p < ¢ 1if p°<6(e) .

Let us now introduce a certaln functional v = v[eg,u,z] Which at a fixed
instant ¢ and for a given vector-function {e(t,x,y,z),u(¢)} takes a real

value,
We shall assume that when ¢ = 0, v[O,u,t] = 0 . For example, p and p,
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are such functionals,

The functional v = v[g,u,¢] 1s sald to be positive (negative) definite
in the metric o if v [, u, t1 > 0 (v [g, u, t] < 0) when ¢ > {,, and if for
any positive number ¢ we can find a positive number & = &(¢), depending
only on ¢ , such that the inequality

vlp, u, t1 >0 () (v g, u, 1] < — & ()
1s satisfied when p > ¢ and £ > I,

The posltive definiteness of the functional depends upon the boundary
conditions imposed on m(t,x,y,z). For example, the functional
‘ 0
_ P 2
U1~S(Q’E+(P)dx

a

1s easlly put in the form
b

n=1le®) —¢* @] + ¢ de

a

It of(g) = O, then the functional v, 1s positive definite in the metric
b
2 s
a
However, if w(a) can take arbitrary values, then v, 1s not positive
definite.

The functional v = vlep,u,t] 1s said to be continuous in the metric
Po =Polo,u,t] at ¢ = to if for any arbltrary small number ¢ > O we can
find a positive number & = 8(e) such that the estimate |v| < ¢ 1s satis-
fled when op,< &(c) and ¢ = ¢, .

For a fixed instant ¢ the functional v = v[ey,u,t] takes random nume-
rical values,

The mathematical expectation of the functional v at time {>> f{, under
the condition that {g,u} is a solution of system (1.1) generated by the
initial distribution

{0 = @ (tg, , ¥, 2), Uy = uP (L)}
1s denoted by

Mt [U] =M [2) [CP, u, t]; P, u, t/CPO’ Ugs tO]

Further, we introduce the notations

M lv<el= S ViF®m), Mo>el= § viF @)

V<e Ve
where F(V) = p(v < V) 1s the probability distribution function of the random
varlable p , so that we shall have
Mt [27] th [7J<8]+Mt [v>8]

Here wu,= u’(t,) 1s an actual realization of u(¢) at the instant ¢= ¢,
and, here, the functional v takes on the actual numerlcal value



1188 T.K. Sirazetdinov

Vo= Ulmgslpst,] and, therefore,

M, [v] = M [v gy, uy, t); @, g, to | Poy Loy Lol = v @, Uy, t,]
We now deflne stabllity.

The unperturbed process ¢ = O 1s sald to be probably stable in the met-
rics o and p, 1f for any arbitrarily small numbers ¢ > O and p (O< p< 1)
we can find a number § = é(e,p) > 0 such that for every solution of system
(1.1) which at the initial instant ¢ = ¢, satisfies the inequality Py<é8(e,p),
the inequality p,(p < ¢) > 1 —p will be satisfled for all ¢ 2 ¢, .

=

Here p,(p < ¢) 1s the probability that at the instant ¢ the inequality
p < ¢ 1s satisfied.

If probable stabllity in the metrics p and p, holds and, moreover, if
for any y > O the condition

hm‘pt(p<7):1 as ¢t — oo
is fulfilled for all solutlons with initial conditlons satlsfying the ine-

quality po < H, (1.2)

where §#, 18 a positive constant, then thls unperturbed process ¢ =0 1s
said to be probably asymptotlcally stable in the metrlcs p and p,, and
region (1.2) lies 1n the region of attraction of the unperturbed motion.

Thus, when the process 1s probably asymptotically stable the probability
that p 1s arbitrarlly close to zero, equals unity as ¢ - » ,

2, Below we prove theorems analogous to the stabllity theorems of Liapu-
nov's second method.

Theorenmn 2.1 . For probable stability in the metrics p and p,
of the process ¢ = O 1t 1s sufficlent that there exists a functional
v = v[gp,u,t] which is positive definite in the metric  and continuous in
the metric p, at ¢ = ¢, and that the mathematical expectation w.[v] of
this functional by virtue of the system (1.1) would not increase wilth time ¢,

Proof . Let there be glven in advance two positive numbers ¢ and
r (0 < p < 1). Since the functional v 1s positive definite in the metric
p , for the glven ¢ > O we can find a positive number ¢, = ¢, (e) such that
v> e (g) for any value of p>¢& for any ¢ > !y otherwise, 1f v < ¢, (e),
then p < ¢ . We choose the number $§ > 0 1n the followlng way.

a) The metric p 1s continuous in the metric p, at the instant ¢ = to
1.e. for given ¢ > O we can find number §, = §, 3 > O such that the ine2’
quality p < ¢ is fulfilled if p, satisfles the condition po< el(e) at
the instant ¢ = ¢, .

b) The functional v 1is continuous in p, at the instant ¢ l.e.
for any given e,> O we can find a number &,= 8,(¢,) > O such tha the
estimate v < ¢ 1s fulfillled if p, satisfies the condition po< 85(ez) at
the 1nstant ¢ = ¢,.

The number is chosen to equal eg= pe,(e) = e,(e ,p) . Let g=gle,p) =
= min 6,,6 ) . &hus, for the prescribed ¢ > O and- p'> 0 we can find &
o = ) > 0 , such that the lnequalities v < e,(e,p) and p < ¢ are
satisried at the initial instant ¢ = ¢, for every p,< 8le,p) .

We convince ourselves that 1f for the prescribed ¢ and p the quantity
8 = b(g,p) is determined 1n the above manner and 1f at the 1lnitial instant
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t = t, the solution {g,u} of system (1.1) satisfies the conditlon p,< & (e, p),
then at any time t > ¢, the inequality p,(p < ¢) > 1 — p is satisfied.

But If v < ¢,{e), then p < ¢ . Consequently, the probability that p < ¢
is not less than the probability p,{v < ¢) 1.e.

v < e py(p< 8)
Therefore, to establish the probable stability it suffices to verify

p(v<<g&)>1—p whent>y

Let the initial conditions satisfy the inequality p,< o(c,p) ; conse-
quently, v < ¢, when ¢ = ¢, . The mathematical expectation of functional
v 1s a nonincreasing variabie, therefore,

M, [v]l < Mt, [v] = v],o< ey (€, p) = pe, () (2.1)

Let us assume that when ¢ = 7 we have pp{(v<<&) <1 — p; then
pPL=Ppr (v>e;) , the probablility that the realization will leave the region
» < ¢, at the lnstant ¢ = T , 1s greater than or equal tc p , l.e. p, > p.

Taking the inequalities My [v<g] =0 anda My [v>g]l>¢ p, into
account, we obtain the estimate '
Mp[v]l= Mplv<e)l + Mp ozl >Mp [v>e] =ep > pe (e) =& (2.2)

which contradicts (2.1), the condition for the mathematical éxpectatlon not
to increase. Consequently, we should have p, (v < €, )> l—p amd p,_(p<e) >1—p
when ¢ 2 t, . The theorem l1ls proved.

Theorenm 2.2. For probable asymptotic stability in the metrics o
and p, of the process ¢ = 0 , it 1is sufflclent that there exist a func-
tional v = v[eg,u,t] which 1s continuous in the metric p, at ¢ = ¢, and
positive definite in the metric p and whose mathematical expect@tilon does
not increase with time by virtue of the system (1.1) and im M,[v] = O as
t - o

Proof . The conditions of Theorem 2.1 are fulfilled and, consequently,
the solution ¢ = O 1s probably stable in the metrics p and .p, . Let us
verify that the solutlon ¢ = 0 1s probably asymptotically stable. For

this, in addition to probable stabllity, 1t 1is necessary to check the equa-

lity 1imp, (p<y) =1 as ¢ - =, where vy 1s an arbltrary small positive
number.,

We introduce the probability distribution function of the random varia-

ble v
F)=p (w<V)
for the instant ¢ belng considered.

Taking into account that v can take on only positive values, the mathe-
matical expectation N,(v»] is put in the form

Ml=§ N —=FWldV
0

Here, the integrand is nonnegatlve and nonincreasing. According to the
conditlions of the theorem we have

[so}
lim M, [v] =1lim { 1 —F )]V =0
=00 t—s00 g
Hence it follows that almost everywhere
lim[{ —F@]=0 or limF ) =I1limp (vKV)=1 as t — oo

The functional v 1is positive definite, i.e. for any positlve number vy
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there exists another positive number b(y) such that when p>7 , v> 8 (7).
Therefore, p, (v <6 (1) <p (p<7y). But, Ump. (o< 8(y)) =1 as 3t ~ =.
Thus, for any positive number y we have 1lim pelp < y) =1 as ¢ = o ,
1.e. the process ¢ = 0 has probable asymptotic stability.

Note . We note that in the proofs of Theorems 2.1 and 2.2 the actual
form of Equations {1.1) were not used. Therefore, Theorems 2.1 and 2.2 also
apply for process as described by equations differing from (1.1), for example,
the equations of ligquid motlion

3 3 3
v, ady { oP - v, Bv]- .
@ T A% gt 2 2, =0 (=t
i=1 j=1 i=1

where not all the equations contain time derivatives (p, are the veloclty
components, p 1s the density, p 1s the pressure, x, are the coordinates).

3. In this section we shall conslider the random process u(t,x,y,z) which
i1s & homogeneous Markov process with a finite or infinlite number of states.
The limit

dM( [»] Mivig, u,t], ¢ u, t/¢1, wa, bl — 2 [, w1, 4] (3.1)

= li
m t— U

dt st 40
wlll be called the mean derivative of functional p by virtue of the system
(1.1) at the point @iy, = @y, Uy, = Uy, = 1.

In the case of the functional

v=[p,u,t] = Sw (¢, u, t) dv (3.2)

T
where = wle,u,t] 1s some function of ¢, u, ¢, the mean derivative can
be written in the form
aM, [v . _
¢ [v] — lim S Mw; @, u, t |, u1, t1] — w (@1, uy, b) dv (3.3)

gt t>tit0 Y t—u

Let the right-hand side of system (1.1) depend only on one random para-
meter y = u{t) which i1s a homogeneous Markov process with a finite number of
states. At each instant ¢ the function u = y(t) can take one value u,
from the finite set U(u,,...,u,) and, moreover, the probability p,,(at)
of the change of values u, ~ u; in time 4¢ satisfies the condition

i = At 4 o (Al), pi=1— 2 ai; At + o (Af) (3.9
bEL
where o(At) denotes an infinitesimal quantity of an order of smallness
higher than A¢ . Then, the mean derivative (3.3) will be quivalent to

diM, (v] w |\ ow 39,
—‘;i'[""'—z {'BT'*’}‘%JI Wfk(tr z, ¥, Z, Psy —3;.’. . ey ul)+
b =

+ 2 [w (g, uj &) —w (@, wi, )] ocu-} dv (3.5)
it

In the case wu = ul{#) has an infinite number of states, the transition
probability from the value y =g to the value y g g 1in the time A¢ 1is
denoted by

pu<Ptfa, t<t,<t+ At/u=a,t)=q(pB) At + o (AY) (3.6)

plu=a,t<t,<t+ Atlu=a,t)=1—gq() At + o (A¢) '
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where oo

g@= g pd 3.7)

—00

Then, for the mean derivative (3.5) we shall have Formula
dM, v} ;! 6¢
! )
‘T=S{ +2 fk(t Z, Y, 2y, Qsy —5— 1"°1ui>+

(e}
. aq (o,
+ { w025 —wig a0 @) (3.8)
-—C0
The following Theorem 3.1 will be & corollary of Theorem 2.1 when y 1s
a Markov process.

Theoremnm 3.1 . If for the system of differential equatlons (1.1)
it is possible to find a functional » which 1s continuous in the metric p,
at ¢ = t, and positive definite in the metrlc p and whose mean derlvative
aM, [v]
dt
by virtue of these equations is a nonpositive quantity, then the solution
= 0 1s probable stable in the metrlics p and p, .

when t;>lo

In the case of ordinary differential equations with random parameters
Theorem 3.1 was proved in [1].

Theorem 3.2. If for the system of differential equations (1.1)
it is possible to find a functional v which 1s continuous 1n the metric p,
at ¢t = ¢, and positive definite in the metric p and whose mean derivative
satisfies the inequality
M, [v] 3.9
e (3.9)
where ¢ 1s a positive constant, then the solution ¢ = O of system (1.1)
is probably asymptotically stable in the metrics p and p, .

Proof . The conditions of Theorem 3.1 are fulfillled and, consequent-
ly, the process =z 0 1s probably stable 1n the metrics p and
order to prove probable asymptotlic stabllity it 1s sufficlent to verify that

1im M, [v] =0 as ¢ - = .
We find the methematical expectation of Expression (3.9)

M [‘2‘%‘# 5@, u, t/ Qo U, to:l < — th[v] (3.10)

But the following Formula holds:

Yim My [v] — M, [v} _ dM [v; @10 w1y 2y / @o, Uy o] — M, [M] (3.41)
1= 1,40 t—q dr, | T ae

Integrating (3.10) from ¢ = ¢, to ¢ = and teking (3.11) into account,

T

we get T

My (o] — Mplol=c | M [v]at
0
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The mathematical expectatlon M, [v] 15 positive and nonincreasing and,
consequently, bounded., Whence follows the convergence of the integral on
the right-hand side as 7 -~ » , Then, as 7T - «» the integrand should
unboundedly decrease to zero,

nea f < A
as ¢ — X

Thus, the conditions of Theorem 2.2 are fulfilled. Consequently, the
process ¢ = 0 1is probably asymptotically convergent.

4, Let us consider some examples. 1. Let a certaln probabilistic pro-
cess be described by Equations

op N, 2R o
w ey +b@mue (4.1)
where af{x,u), b(x,u) are random functions each of which may have twc states
a(z, uy) = ay (), a(z, u) = ay (), b(x,uy) =b (), bz, u) = by ()
Let the probabllity of the change of values i—* u, be represented as

Pi; = a;;At -0 (At). We obtain the sufficlent cond tioh for probable stability
id the Yhetric y
2
p=po= {j qudx}
0

of the solutlon ¢ = 0 of the system in the segment ([0,1].
We introduce the functional

{

/4
= (1 2
v—ogi-Q(z, u) Qdx

which is positive definite in the metric o
Thne quantity Q (z, u) > €°>0 1is random function. We denote

Q (2, u) = Q (z), Q (=, uy) = Qs (%),
For probable stabllity the mean derivative

dM, [v] !
‘;t vl _ 1 la; (1) Q; (D) 9* (I) — a; (0) Q; (0) ¢*(0)] __S A, (z) gPdz
0

where

1 da; (x
A (z) = _"QM b (2) Qi (wy — ~a; [Q;(2) — Q@] G+ 1D
Ox

should be nonpositive when ¢,7 = 1,2,
The sufficient conditions for probable stabllity are
a; (1) <0, a;(0) >0, A;(x) >0 (i=1,2) (4.2)
when the conditlons
() <0, ;00 20, A4 @) >=>e>0 (=1,2 (4.3)

are satlsfied we shall have probable asymptotic stabllity of the process
o =0,

Let
Q) =10, a,(x) =a, =const >0, ay(z)=ay=const >0

Q; (¥) = Q, = counst > 0, Q; (z) = Qg = const >0
Then, conditions (4.3) are rewritten as
[— & (z) + Yyua] Q@ — Yo13Q, =150
[— by (x) + Y4001] @y —2205,Q, =120
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or, slnce ¢,>0 and @,> 0 , we get

by (2) by (2) — 'Yy [ayaby (2) + apby (2) >0, by (z) < Yy logg + @l
by (z) <Yy oy - agy] (4.4)

Equation (4.1) describes a stochastic process. Let us compare this pro-
cess with the two determlnistic processes which correspond to the reallza-
tions y =y, and y = u, . For simpllcity we set

a (xi u) = 01 bl = - 1/3, bz = 1/3, Ui = Qg = 1/2
If we conslder the deterministic processes
dp /dt = — /9, do / dt = /g@

then the first of these 1s Llapunov stable while the second 1s unstable.

However, 1if we consider the stochastlc process
dp /dt =bwe
where b (u) = — 13, b (4) = Yo gy = @z = Y3, then this process 1s probably
asymptotically stable since conditions (4.4) are satisfled.
2. Consider Equation
99

2 i)
R - S kY (&5)

where the random parameter y can take two discrete values vy, and u,
The boundary conditlons are o{0,t) = o(1,2) = 0 .

Let us investigate for probable stability in the metric
l

p=po= {S (P%}%

0
Let

i
v=3{Q@weds, Q@ w>e>0
0
Taking the boundary conditions into account, for the mean derivatlve we
get L
dM, (2] 1 99 \2
== g\ woew () +B @ @]
0
Here

b (z, w) Q (z, uy) #a (2, w;) Q (=, uy)
oz - Ox? -

—2C (=, u) Q (2, w) — o [Q (z, uj) — Q (z, wy)]
The inequalities

Bi(x)==

a(z,u) >0, Bi@@>0 (i=12) (4.6)

give the sufficient conditions for probable stabllity.

3. Let the velocity profile of the fundamental motlon of a liquid be
rectangular, uv,= a(u) + »(u)y , where y 1is a random parameter which may
take the values u, and vy, . The planar perturbed motion of the liquid is
described by Equations [2]

il P o 0w 1 [0v, v\ L(Qz_\_p 6%))
'¢9T=V(EF+W)_"°Z' (“’=T(W"‘?§§)_— 7\ T o)) &7
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Here uv,, v, are the components of the perturbations of the veloclty vec~
tor, § 1s the stream function of the perturbatlions. We 1lntroduce the met-~

ric Y,
p=po=1\®? dr}

and the functional K

1
v == -2—SQ(u)0)2dT

T
The reglon rt 1s taken to be the rectangle I, <z <Xl I Xy < k.
Then for the mean derivative we obtain

dﬂgt[v] v () Q () S [( ‘Z’; )n, — (o %‘%)hz] dz -

1

he hy
(u) Q (uy) & [(ﬁ) —g—:)l, ~_— (ﬁ) 'gg)l‘]dy — & i (uI) Q-(—i)— [(w 2), — (mz)h] dy —

- \{v () Q (uy) [(?5)2 + (%(;‘)2] —ay; [Q () — Q (ui)lmz} dv (i,j=1,2;]F i)

Let Q (#) = Q(u) = 1>0. If the reglon occupled by the perturbations
liles completely inside the region ¢ and 1f on the boundary and outside «
the perturbations are absent, i.e. w = O , then

iifg_t[_”]_ = — v () S[(%%f + (a;;) :ld‘l: (i=1,2)

T
The coefficlent of viscosity v = v(y,) 1s always a positive quantity
and, therefore, dM, [v] /dt<O.
Thus, the process w = 0 1s probably stable.
The particular case of p,= O corresponds to the dispersion of the vor-

tices in an unbounded viscous liquid [3) for random changes in the coeffici-
ent of viscosity.

4, The differential equatlons of the perturbations of the plane-parallel
1sothermal moticn of a gas with a fundamental velocity v, not dependent on
x and y , can be wrlitten as

oy o 1 9P _4_ % (17)1_'1__ 621)2)
W:“”OW—W%JF”(a 32 U 3 3 oxdy
v Ovg 1 6P (8 Ve + % 4 D%y _1__62271)
ot T T ™8 T Tpd ox 322 T 73 0y* T 3 dwdy
op’ o dvg ap’ _ ,
= (Gt 5 vz,  P=RTw @8

where v, , v, are the components of the velocity perturbations, P, p’ are,
respectively, the pressure and density perturbatlions, v,, p, are, res-
pectively, the veloclty, density and temperature of the unpertur%ed motion,
not dependent on the coordinates x, y

The quantitles Yo = vo (), P’ = po’ (¥), To = To(¥), V= v (¥} depend on the
random parameter uy which takes the values y,,...,u,. Let

po E{g(vl + v® + P'z)d‘f}

I

1
Qe fue 4 va 4 S0 an

T
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Then, taklng into account that u,= v,= O on the boundary of the region,
and by setting

hy

Vo9 —@0an Q)= Quy=1>0

hy
for the mean derivative we get (4.9)
dMilv] _ ([ 4 (Bv\2 | (v1\3 | 2 Quy dvs | [9v2\2 | 4 [8up\2
= =@z @) + G T mR & (@S]

T

When v (u) >0 the stochastic process described by system (%.8) is pro-
bably stable.
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