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In this paper we consider the probable stability of random processesdescribed 
by partial differential equations, Theorems are proved on probable stability 
which are analogous to the theorems of Liapunov's second method. 

The stability of the solution of a system of ordinary equations with ran- 
dom parameters was considered by Kats ard Krasovskii [l). 

1. Let us consider perturbed random processes descr'ibed by the system of 

partial differential equations 

Here cpl= 'pi (t,r,y,a) are functions characterizing the state of the pro- 

cess, 5, I/, x are the coordinatesof a region 7 In which the process runs, 

t is the time, ug= U,(C) (n = I. ,...,a) are random parameters and 

(U$, . . ., u,) E u. 

For example, when studying the flow of a liquid or of a gas such parameters 

may be the coefficient of viscosity, the density of the free stream, and 

other such quantities. 

It is assumed that 

& (& 5, y, 2, 0, . - -, 0, Ul, - - -, ua) = 0 

when t>to, (r, y, 2) E z', {Ul, uz,..., y2J E u 

and the system (1.1) has a solution for the prescribed initial and boundary 

conoiitions and for realizations U*P =u,P(t) (p = l,..*,aj. The solution 

'pi zz 0, t > t, (i = I,.,., n) corresponds to the unperturbed motion. The 

perturbed motion differs from the unperturbed In that it has different 
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Initial conditions. Let us denote cp ~(cp,,~,...q~) and u~(ul,uz, . . ..I& ). 

The realizations of the random parameter UP(~) may have dlscontlnultles. 

For example, up= U1 may hold for to< t 4 t, and up= II, for t,c t d t, , 
etc., where the quantities U,, Ua,... are such that when they are substltu- 

ted Into system (1.1) that latter has a solution with respect to cpl (t =l,.. 

. . . . n). At the Instant of discontinuity of the parameter u"(t) the func- 

tions 1, and, co..sequently, the derivatives arp,/at (t = l,...,n) also have 

dlscontlnultles, while the solutions cpi (t = l,...,n) remain continuous 

vector-functions. For example, let the coefficient of viscosity v of a 

certain liquid take the two values V, and va with specified probabilities. 

At the Instant t = t, when passlng.from the state v1 to va the velocity 

and pressure distribution of the liquid remain continuous functions. The 

distributions obtained for v = V, at the Instant t = t, are the Initial 

conditions for the liquid flow when the coefficient of viscosity Is v = v2. 

The random vector-function 

{(P (cpo, uot 4J; t, x9 Y, 4, ZJ, hb to; 01 - {cp, u) 

whose realization satisfies the system of equations (1.1) will be called the 

solution of system (1.1). 

At each Instant t let us define the metrics (distances) pO= po[q,u,t] 

and p = P[V,u,t] which are real nonnegative numbers for any solution of 

system (1.1) In region 7 snd are such that pc[O,u,fi]s 0 aM p[O,u,t] 30. 

The Initial state when t = to will be characterized by the metric p0 

and the state at an arbitrary instant t 3 t,, by the metric p . 

We shall consider solutions of system (1.1) which satisfy the condition 

pO< !iO when t =- t, ) where _FJ~ Is a positive constant. 

The metric p = p[q,u,t] Is said to be continuous In the metric po[rp,u,t] 

lfforanynumber c>O at t=t,wecanflndanumber d=b(o)>O such 

that the Inequality p < o will be satisfied when p,,c 6(c) and t = t, . 

In what follows we shall take It that the metric p = p[q,u,t] 1s COdi- 

nuous In the metric pO= poC~,u,t] at t = to - 

But we shall not assume the converse, i.e. the metric p0 may not be con- 

tinuous In the metric p . For example, 

P = {\ &Pi2 q ’ PO = {\ g1 [ (pi2 + (S)” + (2)” + (%)“I dz)‘i 
In this case, for a given c > 0 there exist a 6(e) z- 0 such that . 

p < c If po< e(c) . 

Let us now introduce a certain functional u = u[cp,u,t] which at a fixed 

instant t and for a given vector-function {~(t,r,v,a),uh)} takes a real 

value. 
We shall assume that when cp - 0, uCO,u,tl = 0 . For example, p and p0 
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are such functlonals. 

The functional u = u[cp,u,t] Is said to be positive (negative) definite 

in the metric p If v [cp, U, t] > 0 (v [cp, u, tl < 0) when t > t,;and lf for 

any positive number c we can find a positive number 6 = a(c), depending 

only on E , such that the Inequality 

V [q, 7.4, tl > 6 (E) (c 19, u, tl < - 6 (El) 

Is satisfied when p > 8 and t > t,. 

The positive definiteness of the functional depends upon the boundary 

conditions Imposed on v(t,x,y,z). For example, the functional 

Is easily put In the form 
b 

v,=~[(p2(b)-(P2(a)l+S~2ds 
a 

If cp(a) = 0 , then the functional u, is positive 

b % 
P c 

However, If cp(a) can take arbitrary values, then 

definite. 

definite In the metric 

The functional u = u[cp,u,t] is said to be continuous In the metric 

is not positive 

PO =po[cp,u,t] at t = t, If for any arbl',rary small number c > 0 we can 

find a positive number 6 = a(c) such that the estimate Iul < E Is satis- 

fled when pO< 6(e) and t = t, . 

For a fixed instant t the functional u = u[rp,u,t] takes random nume- 

rical values. 

The mathematical expectation of the functional u at time t> to under 

the condition that {q,u) is a solution of system (1.1) generated by the 

initial distribution 

Is denoted by 
{%I = cp 00, x7 Y, 4, uo = UP &J> 

Mt [VI = J!z [v [rp, U, tl;(P, u, e&l, %I, to1 
Further, we Introduce the notations 

M, b<el = $ VdF (V), 
V<E 

Mt lv > El = s VdF (V) 
V>E 

where F(V) = p(u < V) Is the probability distribution function of the random 

variable u , so that we shall have 

M, [VI = Mt Iv < ~1 + Aft iv > el 
Here uO= $(t,) Is an actual realization of u(t) at the instant t= to 

and, here, the functional u takes on the actual numerical value 
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ug= uCf&,u,,t,l and, therefore, 

M,, Iv1 = M iv I%, uo, 4J; 'PO, uo, 4l /cpo, 4, 4Il = v k&l, ut), &I 
We now define stability. 

The unperturbed process m i 0 Is said to be probably stable In the met- 

rics p and cc If for any arbltrarllysmaU numbers c > 0 and p (0~ p< I) 

we can find a number 6 = b(c,p) > 0 such that for every solution of system 

(1.1) which at the Initial instant t = t, satisfies the inequality p,,<b(c,p), 

the inequality p,(p < c) > 1 -p will be satisfied for all t3 t, . 

Here p,(p < E) Is the probability that at the Instant t the Inequality 

P<C Is satisfied. 

If probable stability In the metrics p and Co holds and, moreover, if 

for any y > 0 the condition 

lim pt (p < 7) = 1 as t + 00 

Is fulfilled for all solutions with Initial conditions satisfying the lne- 

quality 
Po<H, (1.2) 

where H, Is a positive constant, then this unperturbed process cp s 0 Is 

said to be probably asymptotically stable in the metrics p and ~a> and 
region (1.2) lies In the region of attraction of the unperturbed motion. 

Thus, when the process Is probably asymptotically stable the probability 

that p 1s arbitrarily close to zero, equals unity as t - m . 

2. Below we prove theorems analogous to the stability theorems of Llapu- 

nov's second method. 

Theorem 2.1. For probable stability in the metrics p and p. 
of the process m c 0 It Is sufficient that there exists a functional 

v = v[cp,u,t] which Is positive definite In the metric p and continuous in 

the metric co at t = to and that the mathematical expectation M,[v] of 

this functional by virtue of the system (1.1) would not increase with time t. 

Proof . 

T !"f<orPt<hel$ven 

Let there be given ln advance two positive numbers c and 
Since the functional u is positive definite In the metric 

c>O we can find a positive number cl= cl(c) such that 
v>, e, (E) for any value of p >, & for any t -> to otherwise, if v < c,(c), 
then p < c . We choose the number 5 > 0 In the following way. 

a) The metric p Is continuous In the metric 
i.e. for given c > 0 we can find number bl= bl(c 13" 

at the Instant t = to, 
> 0 such that the lne- 

quality p < c 1s fulfilled If pc satisfies the condition co< b,(c) at 
the Instant t = t, . 

b) The functional u Is continuous In pc at the Instant t = t I.e. 
for any given cl> 0 we can find a number b2= b2(c2) > 0 such tha? the 
estimate v c Ea Is fulfilled if Co satisfies the condition pa< ba(cO) at 
the Instant t - t,. 

The number Is chosen to equal 
= mln b,,d,) . 

I 
%hUS 

ce= pel. (El = ea(c,p) . Let 6- 6(orp) = 
for the prescribed c > 0 and p > 0 we can find a 

b = b EQ) > 0, suci that the Inequalities u c E,(E,P) and p < E are 
satisfied at the Initial instant t = t, for every po< b(c,p) . 

We convince ourselves that If for the prescribed c and P the quantity 
6 = b(c,p) Is determined .ln the above manner and If at the Initial Instant 
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t = to the solution {m,u) of system (1.1) satisfies the condition p0c8(c,p), 
then at any time t 2 tb the Inequality p,(c < E) > 1 - JJ Is satisfied. 
But If u < C,(E), then p -z c . Consequently, the probability that p < c 
Is not less than the probability pi(v < c,) I.e. 

PAV < ElK Pf (P < s) 

Therefore, to establish the probable stability It suffices to verify 

pt(u< q) > 1 -p when I > lo 

Let the Initial conditions satisfy the inequality p < b(e,p) . conse- 
The mathematical expeceatlon of &nctlonal 
therefore, 

Let us assume that when t = T we have PT(~<&I) <I -Pi then 
Pl = PT (u a= 8,) 3 the probability that the realization will leave the region 
ZJ < 9‘ at the instant t=T, Is greater than or equal tc p , i.e. pl>p. 

Taking the inequalities MT [V<E1l 20 and MT [u> E~]>,E,~, into 

account, we obtain the estimate 

MT [d’ MT [“<Ell + MT [u >,%I >MT [u>,E~] 3 Elpl >,pE1 (E) = E, (2.2) 

which contradicts (2.1), the condition for the mathematical expectation not 
to Increase. Consequently, we should have p,(v c c,)>l-p snd n(p<c) >l-p 
when t 3 t, . The theorem is proved. 

T h e o r e m 2.2. For probable asymptotic stability in the metrics p 

and p. of the process cp f 0 , It Is sufficient that there exist a func- 

tional u = v[v,u,t] which Is continuous In the metric PO at t = t, and 
positive definite in the metric p and whose mathematical expectation does 

not Increase with time by virtue of the system (1.1) and llm M,[v] = 0 as 

Proof The condltlonsof Theorem 2.1 are fulfilled and, consequently, 
the solution i f 0 Is probably stable In the metrics and 'pO . Let us 
verify that the solution cp = 0 Is probably asymptotlca!ly stable. For 
this, in addition to probable stability, It is necessary to check the equa- 
lity llm pr(p < v) = 1 as t _ m, where y is an arbitrary small positive 
number. 

We Introduce the probability distribution function of the random varla- 
ble u 

F V) = pt (u<V 

for the Instant t being considered. 

TaWng Into account that v can take on only positive values, the mathe- 
matical expectation M,[v] Is put In the form 

M, [VI = 7 [I - F(v)] fl 
0 

Here, the lntegrand Is nonnegative and nonlncreasing. According to the 
conditions of the theorem we have 

~~M&J]=,~~ ~[1--F(V)Ifl=O 
0 

Hence It follows that almost everywhere 

lim 11 - F (v)] = 0 or lim F (v) = lim pt (v < v) = 1 ast+oo 

The functional v Is positive definite, i.e. for any positive number y 
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Note We note that in the proofs of Theorems 2.1 and 2.2 the actual 
form of Equations (1.1) were not used. Therefore, Theorems 2.1 and 2.2 also 
apply for process as described by equations differing from fl.l), for example, 
the equations of liquid motion 

where not all the equations contain time derivatives (v, are the velocity 
components, p is the density, p Is the pressure, X, are the coordinates). 

3. In this section we shall consider the random process u(t,.r,P,s) which 

is a homogeneous Markov Process with a finite or infinite number of states. 

The limit 
dM, [VI -= *im M [?I [qJ, u, t]; v, u, 1 /(PI, Ulr hl - 3 [WV u19 t11 

dt t - tl (3.1) 
1+f,i-0 

will be called the mean derivative of functional u by virtue of the system 

(1.1) at the point v/t=+ = C&, Ujt=f, = Ulr t = t,. 

In the case of the functional 

v = v Iv, U, tl = s w (rp, u, t) dz 
T 

(3.2) 

where w = W[cp,u,t’j is some function of cp, U, t, the mean derivative can 

be written in the form 

dM, Iv1 
- = lim 

dt s 
hf [w; q, a, t /‘PI, ul, tl] -w (~1, u1, h) & 

1 - t1 (34 
t-4*+0 T 

Let the right-hand side of system (1.1) depend only'on one random Para- 

meter u = u(t) which is a homogeneous Msrkwprocess with a finite number of 

states. At each Instant t the function u = u(t) can take one value u, 

from the finite set U(u, , . . , ,u, ) and, moreover, the probability PI, (At) 

of the change of values ut - U, in time At satisfies the condition 

pij = aijAt -j- o (At), pii = 1 - x aijbt + 0 ( At) (34 
j+i 

where o(at) denotes an inflnlteslmal quantity of an order of smallness 

higher than At . Then, the mean derivatlve (3.3) will be guivalent to 

+ II [W (opt Uj, 1) - w (up, Ui, t)l aij dz 
id I 

In the case u = u(t) has an infinite number of states, the transition 

probability from the value u = Q to the value u Q a in the time At is 

denoted by 

P (u < B #a, t < t, < t + At / u = a, t) = g (a, B) At + o (At) 

p (u = a, t < t, < t + At / u = a, t) = 1- q (a) At + o (At} 
(3.6) 
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where 

Then, for the mean derivative (3.5) we shall have Formula 

(3.7) 

The following Theorem 3.1 will be a corollary of Theorem 2.1 when u Is 

a Markov process. 

Theorem 3.1. If for the system of differential equations (1.1) 

it Is possible to find a functional v which Is continuous in the metric cc 

at t = 6, and positive definite In the metric p and whose mean derivative 

dM, [VI 
dt 

when t 2 to 

by virtue of these equations is a non.positive quantity, then the solution 

Q P 0 Is probable stable In the metrics p and co . 

In the case of ordinary differential equations with random parameters 
Theorem 3.1 was proved In Cl]. 

Theorem 3.2. If for the system of differential equations (1.1) 

it Is posslble to find a functional v which is continuous in the metric co 

at t=t, and positive definite In the metric p and whose mean derivative 

satisfies the inequality 
dM, [VI 

dt < -cv (3.9) 

where o is a positive constant, then the solution cp m 0 of system (1.1) 

is probably asymptotically stable in the metrics p and co . 

Proof . The conditions of Theorem 3.1 are fulfilled and, consequent- 
ly, the process cp = 0 is probably stable in the metrics p and p In 
order to prove probable asymptotic stability It Is sufficient to ver%fy that 
limMt[v] =0 as t-m. 

We find the methematical expectation of Expression (3.9) 

M c dM, I4 ___ ; cp, u, t/pa, uo, to 
dt I -G - cMt[ul (3.10) 

But the following Formula holds: 

lim M, f 4 - MtI [4 _ dM Iv; (~1, ~1, t, /TO. % to] 
f-t t,+o t - t, dtl 

Integrating (3.10) from t = t, to t = T and taking (3.11) Into account, 
we get T 

~,~[u]-i14~lvl~c~ Mt[4dt 
0 
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The mathematical expectation 'Mto [u] Is positive and nonincreasing and, 
consequently, bounded. Whence follows the convergence of the Integral on 
the right-hand side as T - = . Then, as T-t - the lntegrand should 
unboundedly decrease to zero, 

lim M, [II] = 0 as t -+ 00 

Thus, the conditions of Theorem 2.2 are fulfilled. Consequently, the 
process m s 0 Is probably asymptotically convergent. 

4. Let us consider some examples. 1. Let a certain probablllstlc pro- 
cess be described by Equations 

(4.1) 

where a(y,u), a(x,u) are random functions each of which may have twc states 

a (2, ul) = al (4, a (x, 4 = a2 (d, b (x, ~1) = h (4, b (I, u2) = b, (x) 

Pij 
In 

Of 

Let the probability of the change of values u - u be represented as 
= aijAt -j- o (Al). We obtain the sufficient condjtloA for probable stability 
the metric 

‘It 
pEpI)- 

the solution cp 5 0 of the system In the segment [O,r]. 

We Introduce the functional 
1 

v= s !- Q (x, u) cp2dx 

o2 
which Is positive deflnlte In the metric p 

The quantity Q(x, u) > EO>O Is random function. We denote 

Q (I, ~1) = Q1 (4, Q (xv 4 = Qz (4. 

For probable stability the mean derivative 

dM, Iul I 
1 

- = ?- Ioi (0 Qi (0 ‘p2 (0 - ai (0) Qi (0) @WI - \ Ai (4 rp2dx dt 

where 
0 

A,(x) _  1 a”i (x) Qi (~1 -- 
2 C=lX 

-hi(x) Q~(x).- $aijlQj(x)-Qi(l)I ti#i) 

should be nonposltlve when t,J = 1,2. 

The sufficient conditions for probable stability are 

ei (0 <OO, ai (0) >O, Ai(x)>o (i = 1, 2) (4.2) 

when the conditions 

ai (0 GO, 

are satisfied we shall 
cp" 0. 

ai (0) ho, -‘$w>e>o (i = 1, 2) (4.3) 

have probable asymptotic stability of the process 

Let 
9 (1) = 0, R~ (x) = a, = const > 0, a4 (3~) = a2 = const > 0 

91 (4 = QI = cow> 0, Qz (I) = QI = const>O 

Then, conditions (4.3) are rewritten as 

I- b, (4 + Vz%l Q1 - 1/2al,Q, = 1 > 0 

I- b, (4 + 1/2a,ll Qz - 1.'2aZ1Q1 = 1 > 0 
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or, since Q, > 0 and Qa> 0 , we get 

4 (4 4 (4 - ‘/z [aA (4 + a& (4 > 0, b, (4 < V1 1% + 4 

4 (4 < ‘1s ka f; allI (4.4) 

Equation (4.1) describes a stochastic process. Let us compare this pro- 
cess with the two deterministic processes which correspond to the reallza- 
tions u = u, and u = u, . For simplicity we set 

a (x, u) z 0, b, E - ‘/ 3l b, = 118, al2 = azl = 112 

If we consider the deterministic processes 

dq I dt = - l13(p, da) / dt = l/,,‘p 

these Is Liapunov stable while the second Is unstable. then the first of 

However, if we consider the stochastic process 

dq / dt = b (u) q 

where b (~1) - - l/s, b (aa) = l/s, al2 = azl = Vs. then this process Is probably 
asymlztotlcally stable since conditions (4.4) are satisfied. 

2. Consider Equation 

(4.5) 

where the random parameter u can take two discrete values 
The boundary conditions are cp(O,t) = cp(z,$) = 0 . 

U, and ua 

Let us investigate for probable stability in the metric 
1 

‘/a 
prpo- 

1s 1 
(p2dx 

0 

Let 2 

v = + 5 Q (x, u) ‘p2dx, Q (2, 4 > E > 0 
0 

Taking the boundary conditions Into account, for the mean derivative we 
get 

- = - - S [ 24 (~9 ui) Q (2, UJ (2)” + B, (XI P] dX 
dM, [VI 1 

dt 2 
0 

Here 

Bi (x) = 
ab (x, ui) Q (x, 3 a2a (3, ui) Q lx, ui) 

ax - 
- 

3x2 

- 2C (~9 ui) Q (x, UJ - aij 1 Q (2, u$ - Q (x, uJI 

The inequalities 
c @, Ui) > 0, B, (4 > 0 (i = 1,2) (4.6) 

give the sufficient conditions for probable stability. 

3. Let the velocity profile of the fundamental motion of a liquid be 
rectangular, uO= a(u) + b(u)y , where u Is a random parameter which may 
take the values uI and us . The planar perturbed motion of the liquid 1s 
described by Equations [2] 
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Here vlr u2 are the components 
tar‘, I$ Is the stream function of 
rlc 

of the perturbations of the velocity vec- 
the perturbations. We introduce the met- 

pspor 

and the functional 
z 

2, = $ Q (u) o2 dz 

The region 7 Is taken to be theTrectangle 11< x< l,, 
Then for the mean derivative we obtain 

h, < Y d h,. 

--=v(ui)Q(~')~[(~~)~-(~~)~ild..+ 
dM, bl 

+v(ui)Q(ui)[,;:~),, -(+,,jdy-[ v”(Ui)zQllf)I(oe)l,-((oe)l,]dy- 
h h 

5 \{v (UJ Q (UJ [tag,Z + ($)“I - uij [Q (uj) - Q (ui)J a’} dz (‘5 i = 1, 2; i + i) ., 
5 

Let Q (nj) z Q(uJ= l>O. If the region occupied by the perturbations 
lies completely Inside the region 7 and If on the boundary and outside 7 
the perturbations are absent, I.e. w = 0 , then 

dM, 1 VI 
-= -v(uJ \[($)e+(g)B]dZ. 

dt (i=1,2) 
7 

The coefficient of viscosity v = v(u,) Is always a positive quantity 
and, therefore, dM, [VI/ dt60. 

!bus, the process UI t 0 Is probably stable. 

The particular case of 
tices In an unbounded visco~ 

a 0 corresponds to the dispersion of the vor- 
liquid [3] for random changes in the coefflcl- 

ent of viscosity. 

4. The differential equations of the perturbations of the plane-parallel 
Isothermal motlc?l of a gas with a fundamental velocity u0 not dependent on 
x and y , can be written as 

au1 301 -= 
at - “OZ -7 i. g +V($a$ + a$+a%) 

avz 8% 
-=---_o-- 

at ax 

P = RTop’ (4.8) 

where vi, v2 are the components of the velocity perturbations, p, p’ are, 
respectively, the pressure and density perturbations, 
pectively, 

vO, pi, T are, res- 
the velocity, density and temperature of the unperturbed motion, 

not dependent on the coordinates X, k . 

The quantities Do= bo (a), PO'= PO' (U), TO= To(u), v = v(u) depend on the 
random parameter u which takes the values UI 3 . . ..U.. Let 

{S ‘I. 
p ~po E (vl” + vsa + P'~) dz 

v=+\Q(u)/, 
RTo 

vl= + vaa f z pf2 dz 
1 

+ 
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Then, taking into account that u1 = us= 0 on the boundary of the region, 
and by setting 

hl 

s I(P31, - (ps)J dc, Q @iI = Q b,) = 1 > 0 

for the mean derivative we get (4.9) 

When v(uJ),O the stochastic process described by system (4.8) is pro- 
bably stable. 

1. 

2. 

3. 
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